Archive for 14 julio 2014

Introducción a la supersimetría II: El modelo de Wess-Zumino

julio 14, 2014

Continúo con el tema de los posts de supersimetría traídos del otro blog. En realidad este se ve correctamente allí porque ya había añadido matajax, que por ahora sigue funcionando, a mi plantilla de blogspot, pero por completitud, y en previsión de que termine fallando el plugin, lo dejo por aquí también.

Continuo el tema introduciendo una realización de dicha supersimetría en términos de un lagrangiano sencillo, lo que se conoce como el modelo de Wess-Zumino. Quien no tenga muy recientes sus conocimientos de teoría cuántica de campos, y en particular los tipos posibles de spinores, puede leer sobre ello en esta entrada.

Este va a constar de dos campos, un campo escalar complejo \phi formado por dos campos reales A y B, \phi=(A+iB/\sqrt{2}) y un campo spinorial de Majorana \psi . Ambos campos van a carecer de masa. El motivo para ello es que en la naturaleza no se ha observado la supersimetría, lo cuál indica que caso de existir, la supersimetría debe estar rota. Se supone que las partículas supersimétricas de las partículas conocidas habrán adquirido masa a través de un proceso de ruptura de esta supersimetría. Con estos ingredientes el término cinético de nuestro lagrangiano será.

1.L= \partial^{\mu} \phi^*\partial_{\mu}\phi ~ + ~ 1/2i\bar\Psi\displaystyle{\not} \partial \Psi

Ese lagrangiano es invariante bajo una transformación SUSY global:

2. \delta A=\bar\epsilon\psi \delta B=i\bar \epsilon\gamma_5 \psi

\delta \psi=-i\gamma^\mu[\partial_\mu (A + i \gamma_5B)]\epsilon

Donde \epsilon es el generador infinitesimal (asumo que el lector esta familiarizado con como surgen los generadores infinitesimales de simetrías en mecánica cuántica y su relación con las simetrías globales a través de la exponenciación) de la supersimetría, un spinor infinitesimal de Majorana.

Puede verse que, como se espera de una supersimetría, esta transformación nos cambia campos bosónicos en campos fermiónicos. Para ser supersimétrica el lagrangiano debe ser invariante bajo esta transformación. Se puede verificar que bajo ese cambio la variación del lagrangiano es:

3. \delta L=\partial_\mu[1/2\bar\epsilon\gamma^\nu(\displaystyle{\not}\partial(A + i\gamma_5 B))\psi]

Este delta L es una derivada total y por tanto no contribuye a la variación total de la acción y , como anunciaba, hace que 1 sea un lagrangiano supersimétrico. En general los lagrangianos supersimétricos no pueden ser invariantes bajo supersimetría, salvo que sean constantes, y siempre debe entenderse la invarianza en el sentido de que su variación es una derivada total.

Este lagrangiano es adecuado para partículas libres. Si añadimos interacciones se encuentra que le conmutador de dos transformaciones no es cerrado fuera de la capa de masas, y por tanto no es adecuado. Para paliar eso deben añadirse dos campos bosónicos extra, normalmente designados F y G, cuyo lagrangiano es:

4. L= 1/2F^2 + 1/2 G^2

La solución de la ecuación de Euler Lagrange asociada al lagrangiano 4 es F=G=0 y por tanto estos campos no tiene estados en la capa de masas, intervienen en la teoría sólo como partículas virtuales intermedias.

Se ha descrito hasta ahora como sería el lagrangiano para partículas sin masa. Nada impide construir el lagrangiano para partículas con masa. El término de masa tendría la forma:

5. L _m= m(FA + GB -1/2\bar\psi \psi)

La forma mas general de un término de interacción -renormalizable sería.

6. L_i= g/\sqrt{2}[FA^2 - FB^2 + 2GAB - \bar\psi(A - i\gamma_5B)\psi]

Este sería el modelo elemental de Wess-Zumino. Si uno pretende hacer teorías de campos supersimétricas realistas debería trabajar con fermiones quirales zurdos. No es especialmente complicado hacerlo, y repitiendo los pasos uno llegaría a una expresión de los lagrangianos anteriores en términos de esos fermiones quirales. El aspecto más interesante de ese desarrollo es que uno termina con un lagrangiano que puede expresarse de la forma:

7.L = L_K - |\partial W/\partial \phi|^2 ~ - ~ 1/2(\partial^2 W/\partial \phi^2\psi^T_L C \psi_L + herm.conj)

Aquí L_k sería el término cinético para los campos correspondientes y W sería lo que se conoce como el superpotencial. Este juega un papel importante en muchas discusiones sobre supersimetría y será tratado con mas detalle en ulteriores entradas. Por ahora decir que para el modelo sencillo que estamos considerando aquí su expresión más general sería:

8.W= 1/2m\phi^2 ~ + ~ 1/3 g\phi^3

En esta entrada se ha presentado el que posiblemente sea el tratamiento mas sencillo posible de la supersimetría. Actualmente es muy común usar el formalismo de supercampos. Este se basa en la noción de superespacio. El superespacio es el resultado de añadir a las componentes geométricas normales unas componentes “fermiónicas” representadas como variables de Grassman. Un supercampo dependería de ambos tipos de variables. Dadas las peculiares propiedades de las variables de grassman es muy sencillo ver que un desarrollo en serie en términos de las mismas es finito y que, por tanto, se puede dar una expresión general para un supercampo. Cuando se hace eso para campos que solamente tengan spin 1/2 y y 0 se puede ver que el modelo de supercampos obtenido es equivalente a el modelo de Wess-Zumino presentado aquí. Si además se impone que los campos fermiónicos sean quirales se obtiene la versión quiral del modelo de Wess-Zumino. El supercampo que cumple esas características es conocido cómo “supercampo quiral”. Por supuesto se pueden hacer construcciones supersimétricas para campos gauge y, de ese modo, teorías gauge supersimétricas y análogos supersimétricos del modelo standard. La extensión supersimétrica mas sencilla de el modelo standard se conoce como MSSSM (minimal supersymetric stadard modell).

Aquí hemos tratado la supersimetría global. Cuando esta se hace local aparece de manera natural la gravitación y tendríamos teorías de supergravedad. Dado que la supersimétria no esta realizada en el modelo standard se asume que si el universo presenta supersimetría debe hacerlo en una versión con supersimetría rota. La ruptura de supersimetría es un tópico complejo, y juega un papel fundamental en la mayoría de modelos fenomenológicos que se postulan para extender el modelo standard de partículas. Indirectamente eso significa que también juegan un papel en las teorías de cuerdas, en sus diversas variantes. Por ejemplo la teoría F, la mas desarrollada a nivel fenomenológico utiliza una variante del mecanismo de supersimetría conocido como modelo de guidicce-massiero.

Se irán tratando esos tópicos en posteriores entradas.

Finalizo diciendo que estos posts siguen principalmente el libro de texto de P.D. B. Collins, A.D. Martin y E.J Squires “Particle physics and cosmology”. A eso he añadido información adicional de los libros de M. Dine “Supersymmetry and superstrings” y el volumen III de el libro de teoría cuántica de campos de Steven Weinberg.

Anuncios

Introducción a la supersimetría

julio 14, 2014

Continúo con la tarea de rescate de entradas del otro blog que han quedado inoperantes por aquello de que en blogspot no hay soporte nativo para latex, ahora toca un par de entradas sobre supersimetría.

Mucho se ha hablado de supercuerdas. Esta palabra consta de dos partes. La parte de “cuerdas” más o menos es algo que todo el mundo puede entender en el sentido de que todo el mundo tiene la idea intuitiva de lo que es una cuerda. La parte “rara” es la de super.

El prefijo “super” se usó mucho en física en una época. Los casos más destacados probablemente sean los superconductores y la supersimetría. Pese a la coincidencia en el nombre no tiene nada que ver uno con otro. Vamos a ver, inevitablemente muy por encima, cómo avanza el tópico, qué es la supersimetría, SUSY para los amigos.

La motivación inicial para esta teoría provino del problema de la jerarquía. ¿Cuál es este problema? En el marco de las teorías de gran unificación, hay una gran diferencia de energía entre la escala de la ruptura de la simetría electrodébil y la de la de la ruptura de la teoría unificada(SU(5) o la que fuera). Si uno se mete en los tecnicismos del mecanismo de Highs esto requiere un ajuste muy fino de parámetros. Y esto es algo que siempre desagrada.

Una forma de solventarlo es la existencia de cierto tipo de campos escalares de masa 0. Pero no hay ninguna buena razón para esto. Lo que si hay es una buena razón para la existencia de fermiones quirales (o quasiquirales), el hecho de que se hayan observado (son los neutrinos). Estos fermiones quirales tiene masa 0. Si hubiera de algún modo una partícula de spin 0 ligada a ellos tendríamos resuelto el problema pués esa partícula debería tener masa 0.

Para esto uno busca que pueda existir una simetría que transforme bosones en fermiones, y viceversa. denotémosla por Q, i.e.

1.  Q|F>=|B>  Q|B>=|F>

Para ilustrar algunas propiedades clave de la supersimetría cojamos un ejemplo muy sencillo basado en un oscilador armónico cuántico que incluya bosones a y fermiones b, que satisfacen las relaciones de conmutación (y anticonmutación):

2.  [a, a^+]=1, [a,a]=[a^+,a^+]=0

\{b, b^+\}=1, \{b,b\}=\{b^+,b^+\}=0

Dónde, por si alguien no lo conoce {x,y}=x.y +y.x.

El hamiltoniano para este sistema es:

3. H=1/2w_B\{a^+,a\} + 1/2w_F[b^+,b]

Siendo un oscilador armónico sabemos cuál va a ser su energía:

4. E=w_B(n_B + 1/2) + w_F(n_F - 1/2)= w(n_F + n_F)

Dónde en el último paso hemos asumido que las w fermiónica y bosónica sean iguales.

Se puede ver fácilmente que que cada estado tiene una degeneración con el mismo número de grados de libertad bosónicos y fermiónicos.

Edto indica que debe haber algún tipo de (super)simetría en el hamiltoniano. Y en efecto, uno puede comprobar que los operadores:

5. Q=\sqrt{2w}a^+b,   Q^+=\sqrt{2w}b^+a

conmutan con el hamiltoniano, es decir:

6. [Q,H]=[Q+,H]=0

Obviamente los operadores Q y Q+ claramente intercambian un fermión por un bosón y viceversa.

Además tenemos que:

7. {Q,Q+}=2H

Pués bien, esta es la esencia de los operadores de SUSY expresados para un caso sencillo de mecánica cuántica no relativista. Pero claramente estamos interesados en mecánica cuántica relativista, i.e. teoría de campos.

Dejaré para otra ocasión cómo se realiza el álgebra SUSY en teoria de campos. Señalar solamente una característica específica de la SUSY no mencionada hasta ahora que tiene un cierto interés.

Desde que empezó a surgir el interés por las teorías gauge, puede que incluso antes, se planteó la cuestión de si había alguna forma de tener un grupo que mezclara las simetrías internas con la simetría del grupo de Poincaré. Coleman y Mandula en 1967 demostraron que bajo supuestos muy generales esto era imposible.

Pués bien, la superismetría escapa este teorema “no-go” pués aparte del los generadores P_{\nu} (momento lineal) y M_{\mu\nu} (momento angular) y Ta (generadores del grupo gauge) incluye los generadores de la supersimetría.

De hecho estos estarán relacionados con el operador momento por la relación:

8. 

Por cierto, para los posibles lectores de exactas decir que en términos matemáticos la supersimetría tiene la estructura de una álgebra de Lie graduada.

Bien, este ha sido un primer contacto con la supersimetría. En la siguiente entrada hablaré del modelo supersimétrico más sencillo, el de Wess-Zumino.

One string to rule them all

julio 6, 2014

Visto que en blogspot las diversas soluciones para el latex son inestables rescato para este blog una entrada de hace ya unos años en la que hago una primera introducción a lo más básico de la teoría de cuerdas.

Empezamos por lo más sencillo, explicar que es una cuerda dentro de esta teoría. Bien, en realidad es la cosa mas sencilla del mundo, una cuerda (bosónica), matemáticamente, es una curva (real) que evoluciona en el tiempo. ¿Por que alguien se preocupó de trabajar en una cuerda cómo un objeto fundamental en vez de hacerlo con partículas puntuales? La respuesta, curiosamente, es “nadie”. La primera motivación para ocuparse de una teoría de cuerdas proviene de la cromodinámica cuántica, o más bien al estatus de la física de hadrones antes de aparecer la cromodinámica cuántica. Sin entrar en muchos detalles señalar que se sabe que el neutrón y el protón, las partículas que forman el núcleo atómico no son partículas elementales, estan formadas por (3) quarks. Esos quarks se describen por una teoría gauge, la SU(3). Lo curioso es que si los quarks, y las partículas que median su interacción, los gluones, deben formar estados ligados (protones, neutrones, y en realidad todas las partículas hadrónicas) debe haber algo que impida que haya quarks libres, que nunca se han observado. Eso llevó a que en un momento dado se propusiera un modelo fenomenológico bastante descriptivo. Los quarks estaban unidos por algún tipo de cuerda, es decir, existían cuerdas que tenían un quark en cada uno de sus extremos, el confinamiento (ausencia de quarks libres) se debería a que si se estiraba demasiado esa cuerda se rompía en dos nuevas cuerdas cada una con su pareja de quarks, en realidad un quark y un antiquark, en sus extremos (para el protón o neutron era necesario tres cuerdas unidas por un extrem oentre sí y con un quark en los otros extremos). Hacia falta ponerle mates a esa idea, y es lo que se hizo allá por el 75. El problema es que esa teoria tenía un “inconveniente”, en su espectro aparecía una partícula de spin 2 que claramente no encajaba en el modelo de quarks, más adelante se reinterpreta la teoria de cuerdas cómo una teoría fundamental y esa partícula de spin 2 pasa a ser el gravitón. He hblado que en el espectro de una teoria de cuerdas hay partículas, bien, esto significa, hablando de manera simplificada, que las cuerdas vibran y que cada modo de vibración se identifica con algún tipo de partícula. Según esto cada partícula conocida sería un modo de vibración de una cuerda. Como ese rango de partículas incluye los fermiones (por así decirlo las partículas que forman la “materia”) y los bosones (las partículas que median las interacciones entre la materia) tenemos que la teoría de cuerdas sería una teoría que explicaría toda la física conocida, sería una teoría unificada. Y además sólo tiene un parámetro libre, la tensión de la cuerda, así pués con la media de un sólo parámetro se tendría el valor de todos los demás parámetros de la física pués sería deducibles matemáticamente a partir de esa tensión. Tras este previo sobre fenomenológia, no especialmente riguroso, vamos con algo de mates.

En matemáticas, geometría diferencial básica (sin usar formalismo de variedades), una curva es un lugar del espacio de dimensión uno que puede, en un sistema de coordenadas, describirse mediante una caracterización.

X^\nu(\sigma)

Aquí σ es el parámetro que describe la curva y las Xμ son las coordenadas. El índice μ varia desde 0 hasta D-1, dónde D es la dimensión del espacio-tiempo donde se sitúa la cuerda. Bien, esto es una curva, una cuerda es una curva que se deja evolucionar en el tiempo, es decir, que aparte de la dependencia en σ hará una dependencia en τ (tiempo propio).

X^\nu(\sigma, \tau)

Bien, esto es la “cinemática” de la cuerda, nada particularmente complicado, pasemos a la dinámica. Cómo se ha discutido por aquí, y es bien sabido, en física la dinámica suele inferirse a través de una función lagrangiana, ¿que lagrangiana debe describir la cuerda? Bien, hay dos posibles, la más sencilla, conocida cómo la de Nambu-Goto surge de generalizar el lagrangiano de una partícula libre en relatividad especial, que recordemos es:

S = -m \int d{\tau} \sqrt{- \dot{X}^{\mu}\dot{X}_{\mu}}

dónde, cómo es habitual en física, el punto sobre la coordenada denota derivación respecto al tiempo. Esta acción representa la longitud de la línea de universo de la partícula relativista, es decir, una partícula puntual, matemáticamente un punto, al evolucionar en el espacio-tiempo describe una trayectoria, parametrizada por el tiempo τ. La acción es la longitud (en la métrica de Minkowsky) de esa curva. Pués bien, una partícula al evolucionar en el tiempo describe una curva. Una curva al evolucionar en el tiempo describe una superficie, ergo la acción de Nambu-Goto de la cuerda va a ser el área (minkowskiana) de esa superficie:

S_{NG}[X^{\mu}]=-{1\over 2 \pi {\alpha}'} \int d\tau d\sigma\sqrt{-det({\partial}_a X^{\mu} {\partial}_b X^{\nu})}

Bien, esta acción es sencilla de entender, mera generalización de la acción de la partícula clásica. El problema es que aparece una raíz cuadrada, y eso, cuando se quiere proceder a tareas de cuantización, es algo muy molesto. Así pués se prefiere usar otra acción, la de Polyakov. El truco es expresar el área mediante una métrica intrínseca de la superficie, denotada por h, en concreto tenemos:

S_P[X^{\mu},h_{ab}] = - {1\over 4 \pi {\alpha}'} \int d^2 \sigma\sqrt{-h}h^{ab}\partial_a X^{\mu} \partial_b X^{\nu} \eta_{\mu \nu}

dónde la forma concreta para h es:

h_{ab}={\partial}_aX^{\mu}{\partial}_bX^{\nu} \eta_{\mu \nu}

Bien, esta es la forma de la acción. En mecánica clásica una vez que tenemos la acción normalmente lo siguiente que hacemos es calcular las ecuaciones de movimiento asociadas a ella (ecuaciones de Euler-Lagrange). Pero antes de hacer eso hace falta señalar unos aspectos importantes. Esta acción, cómo muchas otras que aparecen en teoría cuántica de campos, tiene simetrías, es decir, existe un grupo de transformaciones de los campos que dejan invariante la acción. La acción de Polyakov tiene tres simetrías:

(i) Invariancia Poincaré , (ii) invariancia bajo difeomorfismos de la Worldsheet , y (iii)invariancia Weyl (invariancia de escala).

Estas invarianzas se expresan matemáticamente en términos del tensor energía-momento, análogo al de la relatividad general, cuya expresión es:

T^{ab}:= {1 \over \sqrt{- h}} {\delta S_P \over \delta h_{ab}}={1\over 4 \pi {\alpha}'} \bigg({\partial}^a X^{\mu}{\partial}^b X_{\mu}-

{1\over 2}{h}^{ab} h^{cd} {\partial}_c X^{\mu}{\partial}_d X_{\mu} \bigg)

La invarianza bajo difeomorfismos implica que este tensor (que nos da cuenta de la energía y el momento de la cuerda) debe conservarse, es decir:

{\nabla}_aT^{ab}=0

La invarianza Weyl se traduce en: T^a_a=0" .

Bien, esto concluye la breve por ahora el análisis de las simetrías, vamos a poner la ecuación de movimiento:

* \partial_a \bigg( \sqrt{-h} h^{ab} \partial_b X^{\mu} \bigg) = 0

Una vez se tiene la ecuación de movimiento se debe proceder a resolverla.

Habíamos dicho que teníamos siemtrías. La invariancia de la acción bajo esas simetría se traduce en que hay grupos de soluciones equivalentes. Necesitamos un modo de deshacernos de las soluciones redundantes, eso esta relacionado con las ligaduras de las que hablé en los post de LQG. No obstante sin necesidad de saber los detalles de la teoria de ligaduras de dirac podemos entender bastantes cosas, sigamos.

Cuando queremos resolver ecuaciones diferenciales (en este caso en derivadas parciales) se imponen condiciones de contorno. En este caso estas condiciones tiene interpretación cómo condiciones en los extremos de las cuerdas, tenemos cuerdas abiertas {\partial}_{\sigma}X^{\mu} {\mid}^{\ell=\pi}_0=0 (condiciones de Neuman) y cerradas X^{\mu} (\tau , \sigma )=X^{\mu}(\tau , \sigma + 2 \pi)  (Diritlech).

En realidad más adelante se comprobó que había mas detalles a tener en cuenta en esto en relación con la teoría de branas, pero no merece la pena ocuparse de ello en esta introducción.

Tenemos las condiciones de contorno, vamos a proceder a encontrar soluciones a la ecuación de movimiento (*). Para hacerlo hay primero que fijar un gauge, elegimos el conocido como gague conforme h_{ab} = \eta_{ab}  ahí la ecuación de movimiento se reduce a la ecuación de Laplace y la solución nos queda para la cuerda cerrada:

X^{\mu} = X^{\mu}_0 + {1 \over \pi T} P^{\mu}\tau + {i \over 2\sqrt{\pi T}} \sum_{n \neq 0}{1\over n} { \alpha^{\mu}_n exp(-i2n(\tau - \sigma)) + \tilde{\alpha}^{\mu}_n exp(-i2n(\tau + \sigma ))}

y para la cuerda abierta:

X^{\mu}(\tau , \sigma )= X^{\mu}_0 +

{1 \over \pi T}P^{\mu}\tau +{i\over \sqrt{\pi T}}\sum_{n \neq 0} {1 \over n} {\alpha}^{\mu}_nexp \big(-in\tau\big) \cos (n\sigma )

dónde  X^{\mu}_0 y P^{\mu}  son la posición y el momento del centro de masas de la cuerda.

Bien, hasta aquí lo básico, la parte clásica. En la cuantización, que no trataré en este post, los α de las dos últimas ecuaciones se convertirán en operadores de creación/aniquilación que se corresponderían con las partículas observadas en la física del modelo standard. Habrá que imponer la anulación de la derivada del tensor de energía momento lo quedará lugar a la famosa álgebra de Virasoro. Y además habrá que comprobar que las simetrías de la teoría clásica se respetan, esto no es algo precisamente trivial, todo lo contrario, esas simetrías sólo se respetan si la dimensión (conocida como dimensión crítica) en que se propaga la cuerdas es distinta de 4. Aquí he estado explicando la cuerda mas sencilla posible, la cuerda bosónica; para esta cuerda la dimensión crítica es 26 (25+1). En realidad la cuerda bosónica no es realista, para empezar, cómo su nombre indica, no tiene nada mas que bosnoes en su espectro. Cuerdas realistas requieren fermiones, eso implica introducir supersimetría y así entramos en el reino de las supercuerdas, par estas la dimensión crítica es 10 (9+1). Desde luego hay muchísimo más que decir sobre la teoría de cuerdas, no en vano un libro de 750 páginas tiene algunos capítulos que más que un libro de texto parece un rápido review de resultados, pero creo que lo expuesto puede servir de orientación de a que nos estamos enfrentando al hablar de teoría de cuerdas.

Algunas vueltas de tuerca a la teoría de cuerdas

julio 4, 2014

Una de las cosas mas deprimentes del estado actual de la física de altas energías es la tremenda cantidad de posibilidades a estudiar. En los 80 había el sueño de una teoría unificada, en la que unos principios básicos, grupos de simetría gauge mas amplios cómo el SU(5) y supersimetría nos dieran una teoría única de la que se pudiera sacar todo. Posteriormente la teoría de cuerdas se vió cómo un paso extra hacia la unificación porque en un sólo objeto, la cuerda relativista cuantizada, con aderezo de supersimetría, se tenía que un único objeto (bueno, casi, que había 5 teorias de cuerdas, type I A y B, type II A y B y la heterótica) daba el espectro de todas las partículas. En los 90, con el descubrimiento de las dualidades, que venían a demostrar que esas diversas teorías de cuerdas eran (con matices) equivalentes pareció surgir un nuevo nivel de unificación. Al principio se pensó que la teoría M sería esa gran teoría unificada.

Pero las cosas no fueron por dónde se suponía. Las teorías Gauge de gran unificación empezaron a encontrarse con problemas, la más sencilla, el SU(5), predecía que el protón era inestable y los experimentos que buscan esa inestabilidad han invalidado el modelo. Se han construido variantes, flipped SU(5), SO(10), etc, que producen valores compatibles con la no observación de la desintegración del protón. Luego está el tema de los monopolos (distintos a los de Dirac, aquí son cuasipartículas asociadas a temas de naturaleza topológica-solitones-) que también predicen esa teorías y no se observan. Ahí la solución viene de la mano de la inflación, que habría diluido la densidad de solitones hasta un número de alrededor de uno por unidad observable del universo. Ahora, a raíz de el descubrimiento de modos tensoriales en el fondo de microondas por el experimento BICEP2, parece que hay una evidencia experimental sólida -aún sinconfirmar totalmente- y bastante directa de la inflación, así que ese punto quedaría más o menos zanjado.

En el terreno de la teoría de cuerdas la cosa se fué complicando mucho. En los 80 el paradigma era que se daría con una compactificación de las dimensiones extra de la cuerda heterótica que permitirían obtener el modelo standard, y que, además, nos darían pistas, o incluso todos los detalles, sobre cómo iría todo hasta energías superiores. Pero aunque se ha llegado muy cerca de tener un modelo standard a partir de la heterótica, con bastantes de los detalles, resulta que la forma de obtenerlo no es única, y cada variante predice a altas energías cosas diferentes. También, usando nuevos objetos aparecidos en los 90, las D-branas, y generalizaciones (M-branas de la teoría M, la 7-brana de la teoría F- otra variante de la teoría de cuerdas introducida por Cunrum Vafa) dieron nuevas maneras de obtener el modelo standard, con similar detalle, pero con un comportamiento más allá del modelo standard totalmente distinto entre ellas (aunque todas podrían agruparse en el paradigma de “mundos brana” dónde, simplificando, las partículas del modelo standard viven en 4 dimensiones y el gravitón en más) y completamente diferente al heterótico. Vale, hay dualidades, pero eso no significa que se pueda decir que son “moralmente iguales” esos escenarios, la física según sube la energía cambia totalmente, en algunos de ellos hacia un SU(5).

Y el descubrimiento de la constante cosmológica ya lo lía aún más, y terminamos con un montón de opciones tremendo. Por ejemplo, en el 2008 Vafa y colaboradores hicieron un auténtico tour de force con la teoría F, con bastantes artículos, algunos de más de 100 páginas, que hacían predicciones para el LHC que, lástima, predecían una masa del Higgs en unos márgenes que son incompatibles, por poco eso sí, con lo observado. Y, claro, si estás con un trabajo fijo (una tenure) en una universidad te puedes permitir embarcarte en esa odisea y que luego no salga nada. Pero sí eres un doctorando que intenta hacer algo que te de una plaza, es posiblemente deprimente.

Total, no daré mas detalles, que hay tantas posibilidades, para una teoría general, o incluso para relativamente pequeños campos (cuál es el modelo concreto de inflación, o no digamos ya que partículas forman la materia oscura), que uno se puede perder de mil maneras, sin ningún tipo de guía unificador. Hemos pasado de la gran unificación a la gran diversificación.

Envista de eso, aparte de mantenerse al día en lo que se va haciendo, yo, personalmente, intento pensar si hay algo que, sin renegar porque sí de lo que ya está hecho, si puede todavía haber alguna clave que guíe entre tantas posibilidades, por supuesto sin un éxito remarcable hasta ahora.

Voy a indicar ahora algunas de las ideas que he venido considerando, en particular las centradas en la teoría de cuerdas.

La idea más arriesgada es plantearse la misma teoría, pero con un cambio de paradigma. En vez de considerar que hay un espacio-tiempo y dentro de el unos objetos, las cuerdas, me planteo una opción diferente, pero que lleva a similar matemática.

En las ecuaciones de Einstein R_{\nu\mu} - g_{\nu\mu}R=T_{\nu\mu} tenemos dos elementos, a la izquierda un elemento puramente geométrico, la curvatura, y a la derecha uno asociado totalmente a la materia, el tensor energía momento, asociado a las partículas. Entre esas partículas estaría el gravitón, que sería una fluctuación de la métrica. Digamos que el gravitón da la reacción del espacio-tiempo a si mismo. En la gravedad cuántica inicial, con partículas puntuales, se parte de una descomposición de una descomposición de la métrica en dos partes g_{\nu\mu}= \eta_{\nu\mu} + h_{\nu\mu}. Aquí \eta_{\nu\mu} sería el término de background (en el caso sencillo la métrica minkowsky), y h una fluctuación que, convenientemente cuantizada, sería el gravitón. Antes de seguir una reflexión algo tonta. Esa perturbación de la métrica tiene los mismos grados de libertad que una partícula de spin 2, y por eso se identifica una métrica, la característica de la gravedad con una partícula de spin 2. Lo curioso es que una métrica en geometría es una forma bilineal (o cuadrática, según se mire). Digamos que uno podría plantearse sí no debería pensarse que el observable básico de la gravedad cuántica, que es la métrica, no debería tal vez ser un objeto bilineal en vez de uno lineal. Pero claro, en cuántica los operadores deben ser lineales, y los intentos de hacer una teoría con operadores no lineales tiene muchos problemas, tanto prácticos como conceptuales. Por eso es más sencillo dejarlo correr y quedarse tranquilo con la identificación de la métrica con una partícula de spin 2, que es algo que tiene mas respaldos (teoría de Fierz-Pauli, en la que, recursivamente, a partir de gravitones se llega, más o menos a la relatividad general). La teoria para un gravitón inspirado en una partícula puntual es no renormalizable, pero en su variante en la que el gravitón aparece cómo uno de los modos de vibración de la cuerda da lugar a una teoría consistente, y eso es algo de agradecer.

En todo caso, seguimos teniendo dos objetos, el espacio-tiempo y la cuerda, y, en última instancia, el objeto mas interesante -para justificar la teoría cuanto menos- de la cuerda, el gravitón, es geométrico. Mi idea es ponerlo todo en el terreno del espacio-tiempo. La idea sería darle una cualidad extra, probablemente de naturaleza geométrica, a ese espaciotiempo para dotarlo de una naturaleza dinámica. Si pensamos en esa propiedad extra cómo una especie de “tensión” (con las adecuadas propiedades buenas de transformación) lo que tendríamos es que en el espacio-tiempo habría líneas de tensión. Y, cómo deberían tener propiedades buenas de covarianza esas líneas de tensión serían equivalentes matemáticamente a las cuerdas bosónicas. Digamos que matemáticamente serían el mismo objeto, pero conceptualmente cambiarían. en vez de ser unos entes que están ahí no se sabe porque, y que son extensos, y no se disgregan, por arte de magia, aparecerían de manera natural por resultado de una dinámica del propio espacio-tiempo. Por supuesto ahí habría un punto extra, una dinámica mas fundamental del espacio-tiempo que da lugar a que en este aparezcan líneas de tensión que podemos describir mediante las cuerdas. En este sentido las cuerdas serían sólo una descripción aproximada y habría algo más fundamental.

Por supuesto esa idea tiene muchos problemas. Para empezar porque ese paradigma funciona bien para la cuerda bosónica, pero se complica para la supercuerda. En realidad, si uno parte de un superespacio (añadir coordenadas de Grassman, que están asociadas a fermiones, al espacio-tiempo ordinario) uno podría obtener la supercuerda, aunque, desde luego, la matemática es complicada. Normalmente las supercuerdas se obtienen mediante la imposición de supersimetría en el worldsheet y luego imponiendo condiciones varias, se llega a que hay supersimetría en el espacio target. Pero vamos, en principio se puede obtener un lagrangiano supersimétrico desde el superespacio, y lo mismo para una supercuerda. Si partimos de una teoría gravitatoria en el superespacio podríamos jugar al juego anterior, de líneas de tensión en el superespacio, que serían las cuerdas. Pero, claro, en realidad se puede demostrar que la teoria de cuerdas en su formulación habitual, tiene cómo limites de baja energía las teorías de supergravedad. En ese sentido la cuerda es mas fundamental que la supergravedad. En el paradigma que propongo sería mas rebuscado. Hay una dinámica, que no sabemos, que se asemeja a la supergravedad (da un superespacio al menos), pero que en principio es distinta, y mas complicada. Esa teoría permite hablar de “tensiones” en el superespacio, que, identidificadas cómo cuerdas, dan lugar a una teoría cuyo límite a bajas energías es la supergravedad. Eso nos daría una condición complicada de consistencia.

En fín, realmente no sé si, con lo que he contado hasta ahora, este punto de vista aporta algo, salvo, tal vez que sea mas “natural” y unificado. Ya no hay dos cosas, espacio-tiempo y cuerdas, sólo una, el espacio-tiempo, ergo es más unificado. Y es mas “natural” porque no hay que postular algo tan exótico cómo una cuerda que no se disgrega ¿por qúe no?.

Por supuesto, lo divertido, es que en esa teoría surgen generalizaciones “naturales” que no lo son tanto en la teoría de cuerdas. Para empezar ya no hay motivo natural para imponer que la tensión sea la misma en todos los puntos y, por tanto, en el lagrangiano de la cuerda la T dependería de x T(x). Puesto que la tensión es el único parámetro (en última instancia, no en la práctica) libre de la cuerda, y aquí es simplemente algo que varía de punto a punto, al menos en principio, se pierde la idea de que si supiéramos T, y la suficiente matemática, podríamos deducir todo lo demás, las constantes de la física de bajas energías, correspondientes a compactificaciones/braneworlds concretas. Pero es de suponer que en la teoría geométrica que da lugar a esa tensión habría una constante, y se recuperaría el status quo.

Más divertido aún es pensar en que no hay que pensar que la T deba ser positiva. Habría que plantearse las T’s negativas. Si interpretamos la T cómo densidad de energía, es lo habitual, tendríamos que las cuerdas con T negativa tendrían energía negativa y, por tanto, podrían ser “materia exótica” en el sentido del término usado habitualmente en la literatura de agujeros de gusano.

Y, para cerrar esta entrada, dejo un link a un artículo publicado hoy en arxiv que trata precisamente de la posibilidad de tratar la tensión cómo algo dinámico en la teoría de cuerdas Dynamical String Tension in String Theory with Spacetime Weyl Invariance. Por supuesto en ese enlace el planteamiento y los detalles no están en nada relacionados con lo que yo planteo. Dos de los autores Steindard y Turok, son bien conocidos, aunque no necesariamente bien considerados por todo el mundo (están en la lista negra de Lubos, por ejemplo xD). Digamos que la publicación de ese artículo, que he empezado a leer, y seguiré leyendo ahora, me ha animado a escribir esta entrada, centrándome en las ideas relacionadas con lo que se plantea. Hay mas cosas que me gustaría comentar sobre la teoría de cuerdas, pero ya será cuando se presente la ocasión propicia.